Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Asian Spine Journal ; : 993-999, 2016.
Article in English | WPRIM | ID: wpr-116282

ABSTRACT

STUDY DESIGN: The strength effects of a pedicle screw-rod system supplemented with a novel cross-link configuration were biomechanically evaluated in porcine spines. PURPOSE: To assess the biomechanical differences between a conventional cross-link pedicle screw-rod system versus a novel cross-link instrumentation, and to determine the effect of the cross-links. OVERVIEW OF LITERATURE: Transverse cross-link systems affect torsional rigidity, but are thought to have little impact on the sagittal motion of spinal constructs. We tested the strength effects in pullout and flexion-compression tests of novel cross-link pedicle screw constructs using porcine thoracic and lumbar vertebrae. METHODS: Five matched thoracic and lumbar vertebral segments from 15 porcine spines were instrumented with 5.0-mm pedicle screws, which were then connected with 6.0-mm rods after partial corpectomy in the middle vertebral body. The forces required for construct failure in pullout and flexion-compression tests were examined in a randomized manner for three different cross-link configurations: un-cross-link control, conventional cross-link, and cross-link passing through the base of the spinous process. Statistical comparisons of strength data were analyzed using Student's t-tests. RESULTS: The spinous process group required a significantly greater pullout force for construct failure than the control group (p=0.036). No difference was found between the control and cross-link groups, or the cross-link and spinous process groups in pullout testing. In flexion-compression testing, the spinous processes group required significantly greater forces for construct failure than the control and cross-link groups (p<0.001 and p=0.003, respectively). However, there was no difference between the control and cross-link groups. CONCLUSIONS: A novel cross-link configuration that features cross-link devices passing through the base of the spinous processes increased the mechanical resistance in pullout and flexion-compression testing compared to un-cross-link constructs. This configuration provided more resistance to middle-column damage under flexion-compression testing than conventional cross-link configuration.


Subject(s)
Lumbar Vertebrae , Pedicle Screws , Spinal Fusion , Spine
2.
Journal of Korean Neurosurgical Society ; : 284-288, 2014.
Article in English | WPRIM | ID: wpr-96984

ABSTRACT

A rare case of atlantoaxial rotatory subluxation occurred after pediatric cervical spine surgery performed to remove a dumbbell-shaped meningioma at the level of the C1/C2 vertebrae. This case is classified as a post-surgical atlantoaxial rotatory subluxation, but has a very rare morphology that has not previously been reported. Although there are several reports about post-surgical atlantoaxial rotatory subluxation, an important point of this case is that it might be directly related to the spinal cord surgery in C1/C2 level. On day 6 after surgery, the patient presented with the Cock Robin position, and a computed tomography scan revealed a normal type of atlantoaxial rotatory subluxation. Manual reduction was performed followed by external fixation with a neck collar. About 7 months after the first surgery, the subluxation became severe, irreducible, and assumed an atypical form where the anterior tubercle of C1 migrated to a cranial position, and the posterior tubercle of C1 and the occipital bone leaned in a caudal direction. The pathogenic process suggested deformity of the occipital condyle and bilateral C2 superior facets with atlantooccipital subluxation. A second operation for reduction and fixation was performed, and the subluxation was stabilized by posterior fixation. We encountered an unusual case of a refractory subluxation that was associated with an atypical deformity of the upper spine. The case was successfully managed by posterior fixation.


Subject(s)
Humans , Congenital Abnormalities , Meningioma , Neck , Occipital Bone , Songbirds , Spinal Cord , Spine
SELECTION OF CITATIONS
SEARCH DETAIL